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In a typical BMI (Shanechi, 2017) the decoder is initialized by
a supervised calibration procedure, which creates a map based
on labelled examples of desired actions and corresponding neural
activities. However, a good calibration is not sufficient to achieve
proficient BMI control, as the performance of the decoder often
degrades and fluctuates when evaluated online, due to imperfect
predictions, recording instabilities, changes in neuronal proper-
ties, attentional changes, and changes brought about by learning
(Barrese et al., 2013; Downey et al., 2018). BoMI decoders suf-
fer from similar issues. The decoder of a BoMI, also referred
to as ‘‘forward map’’, is initialized by unsupervised identifica-
tion of the low-dimensional, latent manifold of unconstrained
users’ movements recorded during an initial calibration (Casadio
et al., 2010). This latent manifold is expected to change with
subsequent practice. Therefore, a discrepancy is likely to develop
in time between the evolving latent manifold of the user and
the initial BoMI forward map. Indeed, it has been observed that
extensive practice with a BoMI led to the consolidation of task-
specific movement strategies (Pierella et al., 2017) and several
studies in brain–machine interfaces demonstrated the existence
of a stable manifold of neural activity linked to BMI use and
interpreted this as the result of neural adaptation following ex-
tensive practice with the interface (Gallego et al., 2020; Ganguly
& Carmena, 2009; Oweiss & Badreldin, 2015; Shenoy & Carmena,
2014).

The consequence of adopting a fixed activity-intention map
after its initial offline tuning, is that the user is left with the
burden of learning how to use the interface for achieving new
goals within new operating conditions that the decoder has not
been optimized on.

Closed-loop supervised decoder adaptation in BMIs has been
proposed as an effective way to increase decoder performance
during use. This was the case when allowing the decoder param-
eters to smoothly change according to the inferred movement
goal during within-session interface operation (Dangi et al., 2013;
Orsborn et al., 2014). A very recent study considered instead
the case of performance loss arising from decoder instabilities
across sessions. They showed that by calibrating the decoder us-
ing features within the manifold of stable activity of the recorded
neurons, performance of the BMI can be reliably recovered by
manifold alignment across sessions (Degenhart et al., 2020). De-
spite contributing encouraging results, these current perspectives
rely either on the knowledge of user intent or on the presence of
an established manifold of neural activity linked to the use of the
BMI. Hence, they cannot be easily extended to facilitate the use of
the interface when the movement goal is unknown or when the
formation of new neural strategies is still ongoing and the activity
manifold has not yet consolidated (Oby et al., 2019).

Given the current limitations of closed-loop decoder adapta-
tion, we propose a procedure for facilitating interface operation
that does not rely on estimates of user intent and can be ap-
plied from the very initial stages of learning. The procedure is
initially developed for application with body–machine interfaces
and exploits a non-linear autoencoder (AE) network (Kramer,
1991) trained iteratively to identify and track the evolution of the
latent manifold of its inputs.

Previous work from our group suggested that individuals
training with a linear BoMI that was adapted iteratively based on
movement statistics increased movement efficiency compared to
a fixed interface and were able to develop a more faithful internal
representation of the BoMI forward map (De Santis et al.
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xplore their range of motion. This procedure is not task-related,
s users do not receive visual feedback of their movements and
re not yet connected to the device. Data collected during calibra-
ion are then used as training set for a dimensionality reduction
DR) algorithm that derives f by extracting the low-dimensional,
-D, manifold in which the highest amount of variance of body

ignals is available. Common iterations of BoMIs exploit linear DR
ethods to extract such low-dimensional manifold, e.g. Principal

omponent Analysis (PCA) (Wold et al., 1987), or Kalman Filter
Seáñez González et al., 2016). In this study, we explore the use
f a non-linear DR algorithm, autoencoder networks.

.2. Fixed autoencoder

AEs are unsupervised artificial neural networks capable of
earning efficient lower dimensional representations of the input
ata without labelled data. An AE is a cascade of two components:
n encoder E that converts the inputs to a lower dimensional
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Fig. 3. Setup for the reaching task and training protocol. The participant was sitting in front of a computer monitor and was controlling a cursor using signals
generated by IMUs (red boxes). Training (grey) and test (blue) targets were uniformly distributed on a circle. Four training targets were placed in four directions
(45�+k90�), while eight test targets were placed in eight directions (22.5�+k45�). Each target was placed at the same distance L of 10.5 cm from HOME target.
ll 4 targets had been reached. In the last repetition of the
targets visual feedback of the cursor was removed, and the

articipants were asked to stop moving when they believed to
e in the target (blind trials). The goal of these blind trials was
o establish if the participants were guided by error feedback
r if, instead, they formed a feedforward command based on an
nternal representation of the cursor space.

During the first training epoch, the encoder for the adaptive
roup (A) was initialized with E(0) and kept constant for 60 s

(baseline). After that, the map was iteratively updated as de-
scribed in Table 1. Update of the map was suspended during blind
trials.

3.4.4. Test phase
The participants practised a centre-out reaching task to eight

target locations uniformly distributed on a circle (Fig. 3, blue
targets). After each successful reaching, they were asked to move
the cursor back to the central HOME target (Fig. 3, green target).
In each test the eight targets were presented once.

A total of three tests were presented: an initial test as baseline
before starting the experiment, a midway test after four epochs
of training, and a final test at the end of the experiment. For the
whole duration of each test, the control group (F) practised with
E(0), while the map update was suspended for the adaptive group
(A). Hence both groups practised with the same map during the
initial test epoch.

3.5. Outcome measures

3.5.1. Sensitivity tuning
To evaluate the convergence and the stability of the a-AE in

the offline sensitivity tuning we computed three metrics.
First, we quantified the tracking performance of the a-AE

based on the reconstruction error (RE). RE is defined as the
loss function described in Eq. (2), that was minimized every two

seconds during the online retraining of the AE. A reduction of the
reconstruction error implies that the mapping was providing a
stable representation of the AE training data set.

To quantify the stability of the interface when using the a-
AE, we considered the actual cursor vector p(n), and the cursor
vector, Op(n), that would have been obtained without updating the
encoder:
Op(n)

D E(n�1)(q(n))

p(n)
D E(n)(q(n))

(7)

where E(n�1) and E(n) are the two time-consecutive encoders
and q(n) is the movement set used in the training of the AE at
the current update iteration. Note that, even though the a-AE at
consecutive update iterations (E(n�1) and E(n)) was trained with
different movement set q, here we computed the cursor trajectory
using the same set q(n). This allowed us to evaluate the static
jump, defined as the L2 norm between the final k value of Op(n)

(end of an update iteration) and the initial value of p(n) n
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computed the number of trials completed during baseline
and then during time intervals of two minutes, including
the final two minutes of training. Blind trials were not
considered in this metric.
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Fig. 5.Performance metrics for adaptive (red) and fixed (black) group. Panel A: Number of trials completed during baseline, after two, four, six minutes followingbaseline and during the final two minutes of training. The asterisk represents a significant difference between groups during the last 2 min of training. Panel B:
Endpoint error during blind trials of each training epoch. Panel C-D: Linearity index and movement smoothness values during each training and test epoch. Mean
values across participants are plotted with 95% confidence interval.

Fig. 6.Panel A: Bi-dimensionality index values for adaptive (red) and static (black) group during each training epoch. Mean values across participants are plottedwith 95% confidence interval. Panel B: Variance accounted for (VAF) values for adaptive (red) and static (black) group during each batch of the training duration.
Mean across subjects is shown as a bold line for both groups.
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Fig. 7. Similarity matrix representing the similarity between final encoders
mong participants. The higher the value of a cell, the more similar the final
ncoders of the two participants of that cell. The matrix has been ranked to
luster participants with similar final encoders.

Fig. 8. Cursor trajectories of one participant (S8, black lines) during the final test
poch. We took the IMU data of S8 recorded during the final test epoch and
pplied the final encoder of a participant with whom S8 had a high similarity
S4, red lines, Panel A) and a low similarity (S7, red lines, Panel B).

ubstitute the final AE map that a participant used in the late
est phase with that of another participant whose map had a
omparable structure, the same participant would have been able
o cover the target space much more consistently (Fig. 8A) than
ith a map whose similarity was not as pronounced (Fig. 8B).

. Discussion

In this study we proposed an adaptive platform based on
he use of an iterative non-linear autoencoder to implement
nsupervised tracking of user’s manifold for improving the ease-
f-use of a human–machine interface. First and foremost, our
esults support the use of a non-linear AE as a proficient control
ap within the body–machine interface scheme. Moreover, the

daptive approach led to an increased representational efficiency
f the interface decoder while concurrently increasing users’ task-
elated performance, both in terms of number of trials completed
ver time and accuracy during reaching of blind trials. This result
uggests that the online co-adaptation process encourages the
evelopment of a more accurate internal model. Importantly,
he proposed approach has three salient features that makes it
ppealing in many applications other than the one tested here:
i) it cancels the cost of interrupting the operation of the device
o perform decoder recalibration, (ii) as no information about
he state of the task and/or intended task goals is needed, the
manifold tracking algorithm can be applied to a great variety of
contexts, iii) it does not rely on the existence of a stable neural or
movement manifold to compensate for decoder instabilities, al-
lowing it to be applied in the earliest stages of interface operation,
when the formation of new neural strategies is still on-going.

5.1. Autoencoder networks can proficiently control low-dimensional
devices

There is an increasing enthusiasm about using autoencoder
networks in the field of human–machine interfaces (HMIs). AEs
give the freedom of choosing the type of network architec-
ture and level of complexity (e.g., linear/non-linear, generative/
convolutional/recurrent, number of hidden layers and neurons
per layer), thus potentially allowing to better match the degree of
complexity of the input signal and hence allow for a great variety
of applications. For instance, AE-based approaches have recently
been employed for adversarial and variational domain adaptation
(Farshchian et al., 2018; Hsu et al., 2017) and for extracting
precise estimates of neural dynamics (Pandarinath et al., 2018).
However, applicability of non-linear AEs for the control of low
dimensional devices have seen limited efforts.

The use of AEs, or more specifically of their encoder sub-
network, as a forward map in a BoMI has been first proposed by
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.4. Map adaptation is guided by the individual’s learning trajectory

If on the one hand the a-AE was successful in tracking the
ovement manifold of each participant, on the other we noted

hat the changes in the encoder were not consistent across par-
icipants. Namely, we could divide the BoMI users into two main
roups: those who converged towards a similar encoder structure
t the end of the training (S1, S2, S4, S6, S8, S10 - Fig. 7) and those
hose maps did not converge to a particular similarity value

S3, S5, S7, S9 - Fig. 7). All the participants were able to reach a
atisfactory level of performance regardless of whether the map
as converging towards a particular structure. Furthermore, as
entioned before, in addition to being adaptive, the redundant

haracter of the interface allowed each participant to complete
he task with a different strategy. We speculate that the final
ncoder was merely a result of the learning trajectory of each
articipant. Indeed, if two participants were to exhibit the same
ovement dynamics (i.e., strategy) from the start to the end of

the practice, it is reasonable to assume that they would have
converged towards the same encoder. Since this was not always
the case, we concluded that some participants effectively learned
the task in a different way. It is important to remark that the
a-AE was able to guide them to an efficient resolution of the task
regardless of the inverse model employed by the participant. This
is a remarkable characteristic that increases the generalization
capability of the proposed interface.

5.5. Perspective on current adaptive interfaces

The problem of building adaptive interfaces is raising increas-
ing interest in the realm of human–machine interactions. Here
we focused on the development of an adaptive interface that pro-
vides a seamless interaction with the user during online operation
of the interface. In the field of BMIs, the closed-loop adaptation
of the interface is driven by some policies associated with the
user’s known movement intention (Vidaurre et al., 2010). This
results in supervised adaptation as, for example, it would require
the user to perform pre-selected movements to guide the update
of the interface parameters (Dangi et al., 2014;
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